Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Packing Low-Diameter Spanning Trees (2006.07486v1)

Published 12 Jun 2020 in cs.DS

Abstract: Edge connectivity of a graph is one of the most fundamental graph-theoretic concepts. The celebrated tree packing theorem of Tutte and Nash-Williams from 1961 states that every $k$-edge connected graph $G$ contains a collection $\cal{T}$ of $\lfloor k/2 \rfloor$ edge-disjoint spanning trees, that we refer to as a tree packing; the diameter of the tree packing $\cal{T}$ is the largest diameter of any tree in $\cal{T}$. A desirable property of a tree packing, that is both sufficient and necessary for leveraging the high connectivity of a graph in distributed communication, is that its diameter is low. Yet, despite extensive research in this area, it is still unclear how to compute a tree packing, whose diameter is sublinear in $|V(G)|$, in a low-diameter graph $G$, or alternatively how to show that such a packing does not exist. In this paper we provide first non-trivial upper and lower bounds on the diameter of tree packing. First, we show that, for every $k$-edge connected $n$-vertex graph $G$ of diameter $D$, there is a tree packing $\cal{T}$ of size $\Omega(k)$, diameter $O((101k\log n)D)$, that causes edge-congestion at most $2$. Second, we show that for every $k$-edge connected $n$-vertex graph $G$ of diameter $D$, the diameter of $G[p]$ is $O(k{D(D+1)/2})$ with high probability, where $G[p]$ is obtained by sampling each edge of $G$ independently with probability $p=\Theta(\log n/k)$. This provides a packing of $\Omega(k/\log n)$ edge-disjoint trees of diameter at most $O(k{(D(D+1)/2)})$ each. We then prove that these two results are nearly tight. Lastly, we show that if every pair of vertices in a graph has $k$ edge-disjoint paths of length at most $D$ connecting them, then there is a tree packing of size $k$, diameter $O(D\log n)$, causing edge-congestion $O(\log n)$. We also provide several applications of low-diameter tree packing in distributed computation.

Citations (8)

Summary

We haven't generated a summary for this paper yet.