Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Notes on complexity of packing coloring (1712.08373v1)

Published 22 Dec 2017 in cs.CC, cs.DM, and math.CO

Abstract: A packing $k$-coloring for some integer $k$ of a graph $G=(V,E)$ is a mapping $\varphi:V\to{1,\ldots,k}$ such that any two vertices $u, v$ of color $\varphi(u)=\varphi(v)$ are in distance at least $\varphi(u)+1$. This concept is motivated by frequency assignment problems. The \emph{packing chromatic number} of $G$ is the smallest $k$ such that there exists a packing $k$-coloring of $G$. Fiala and Golovach showed that determining the packing chromatic number for chordal graphs is \NP-complete for diameter exactly 5. While the problem is easy to solve for diameter 2, we show \NP-completeness for any diameter at least 3. Our reduction also shows that the packing chromatic number is hard to approximate within $n{{1/2}-\varepsilon}$ for any $\varepsilon > 0$. In addition, we design an \FPT algorithm for interval graphs of bounded diameter. This leads us to exploring the problem of finding a partial coloring that maximizes the number of colored vertices.

Citations (8)

Summary

We haven't generated a summary for this paper yet.