Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Sub-Gaussian Principal Component Analysis and Width-Independent Schatten Packing (2006.06980v1)

Published 12 Jun 2020 in cs.DS, cs.LG, math.OC, and stat.ML

Abstract: We develop two methods for the following fundamental statistical task: given an $\epsilon$-corrupted set of $n$ samples from a $d$-dimensional sub-Gaussian distribution, return an approximate top eigenvector of the covariance matrix. Our first robust PCA algorithm runs in polynomial time, returns a $1 - O(\epsilon\log\epsilon{-1})$-approximate top eigenvector, and is based on a simple iterative filtering approach. Our second, which attains a slightly worse approximation factor, runs in nearly-linear time and sample complexity under a mild spectral gap assumption. These are the first polynomial-time algorithms yielding non-trivial information about the covariance of a corrupted sub-Gaussian distribution without requiring additional algebraic structure of moments. As a key technical tool, we develop the first width-independent solvers for Schatten-$p$ norm packing semidefinite programs, giving a $(1 + \epsilon)$-approximate solution in $O(p\log(\tfrac{nd}{\epsilon})\epsilon{-1})$ input-sparsity time iterations (where $n$, $d$ are problem dimensions).

Citations (40)

Summary

We haven't generated a summary for this paper yet.