Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Algorithms for High-Dimensional Robust Covariance Estimation (1906.04661v1)

Published 11 Jun 2019 in cs.LG, cs.DS, math.ST, stat.ML, and stat.TH

Abstract: We study the problem of estimating the covariance matrix of a high-dimensional distribution when a small constant fraction of the samples can be arbitrarily corrupted. Recent work gave the first polynomial time algorithms for this problem with near-optimal error guarantees for several natural structured distributions. Our main contribution is to develop faster algorithms for this problem whose running time nearly matches that of computing the empirical covariance. Given $N = \tilde{\Omega}(d2/\epsilon2)$ samples from a $d$-dimensional Gaussian distribution, an $\epsilon$-fraction of which may be arbitrarily corrupted, our algorithm runs in time $\tilde{O}(d{3.26})/\mathrm{poly}(\epsilon)$ and approximates the unknown covariance matrix to optimal error up to a logarithmic factor. Previous robust algorithms with comparable error guarantees all have runtimes $\tilde{\Omega}(d{2 \omega})$ when $\epsilon = \Omega(1)$, where $\omega$ is the exponent of matrix multiplication. We also provide evidence that improving the running time of our algorithm may require new algorithmic techniques.

Citations (63)

Summary

We haven't generated a summary for this paper yet.