Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decorrelated Double Q-learning (2006.06956v1)

Published 12 Jun 2020 in cs.LG and cs.AI

Abstract: Q-learning with value function approximation may have the poor performance because of overestimation bias and imprecise estimate. Specifically, overestimation bias is from the maximum operator over noise estimate, which is exaggerated using the estimate of a subsequent state. Inspired by the recent advance of deep reinforcement learning and Double Q-learning, we introduce the decorrelated double Q-learning (D2Q). Specifically, we introduce the decorrelated regularization item to reduce the correlation between value function approximators, which can lead to less biased estimation and low variance. The experimental results on a suite of MuJoCo continuous control tasks demonstrate that our decorrelated double Q-learning can effectively improve the performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.