Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hypothesis Testing for Shapes using Vectorized Persistence Diagrams (2006.05466v3)

Published 9 Jun 2020 in stat.ME and math.AT

Abstract: Topological data analysis involves the statistical characterization of the shape of data. Persistent homology is a primary tool of topological data analysis, which can be used to analyze topological features and perform statistical inference. In this paper, we present a two-stage hypothesis test for vectorized persistence diagrams. The first stage filters vector elements in the vectorized persistence diagrams to enhance the power of the test. The second stage consists of multiple hypothesis tests, with false positives controlled by false discovery rates. We demonstrate the flexibility of our method by applying it to a variety of simulated and real-world data types. Our results show that the proposed hypothesis test enables accurate and informative inferences on the shape of data compared to the existing hypothesis testing methods for persistent homology.

Summary

We haven't generated a summary for this paper yet.