Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling of Persistent Homology (1711.01570v1)

Published 5 Nov 2017 in stat.AP

Abstract: Topological Data Analysis (TDA) is a novel statistical technique, particularly powerful for the analysis of large and high dimensional data sets. Much of TDA is based on the tool of persistent homology, represented visually via persistence diagrams. In an earlier paper we proposed a parametric representation for the probability distributions of persistence diagrams, and based on it provided a method for their replication. Since the typical situation for big data is that only one persistence diagram is available, these replications allow for conventional statistical inference, which, by its very nature, requires some form of replication. In the current paper we continue this analysis, and further develop its practical statistical methodology, by investigating a wider class of examples than treated previously.

Summary

We haven't generated a summary for this paper yet.