Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monte Carlo Tree Search guided by Symbolic Advice for MDPs (2006.04712v2)

Published 8 Jun 2020 in cs.GT

Abstract: In this paper, we consider the online computation of a strategy that aims at optimizing the expected average reward in a Markov decision process. The strategy is computed with a receding horizon and using Monte Carlo tree search (MCTS). We augment the MCTS algorithm with the notion of symbolic advice, and show that its classical theoretical guarantees are maintained. Symbolic advice are used to bias the selection and simulation strategies of MCTS. We describe how to use QBF and SAT solvers to implement symbolic advice in an efficient way. We illustrate our new algorithm using the popular game Pac-Man and show that the performances of our algorithm exceed those of plain MCTS as well as the performances of human players.

Citations (2)

Summary

We haven't generated a summary for this paper yet.