Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Neural Network for Low-Memory IoT Devices and MNIST Image Recognition Using Kernels Based on Logistic Map (2006.02824v2)

Published 4 Jun 2020 in cs.NE, cs.ET, and nlin.AO

Abstract: This study presents a neural network which uses filters based on logistic mapping (LogNNet). LogNNet has a feedforward network structure, but possesses the properties of reservoir neural networks. The input weight matrix, set by a recurrent logistic mapping, forms the kernels that transform the input space to the higher-dimensional feature space. The most effective recognition of a handwritten digit from MNIST-10 occurs under chaotic behavior of the logistic map. The correlation of classification accuracy with the value of the Lyapunov exponent was obtained. An advantage of LogNNet implementation on IoT devices is the significant savings in memory used. At the same time, LogNNet has a simple algorithm and performance indicators comparable to those of the best resource-efficient algorithms available at the moment. The presented network architecture uses an array of weights with a total memory size from 1 to 29 kB and achieves a classification accuracy of 80.3-96.3%. Memory is saved due to the processor, which sequentially calculates the required weight coefficients during the network operation using the analytical equation of the logistic mapping. The proposed neural network can be used in implementations of artificial intelligence based on constrained devices with limited memory, which are integral blocks for creating ambient intelligence in modern IoT environments. From a research perspective, LogNNet can contribute to the understanding of the fundamental issues of the influence of chaos on the behavior of reservoir-type neural networks.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube