Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spectral flow, Brouwer degree and Hill's determinant formula (2006.00956v1)

Published 1 Jun 2020 in math.CA, math.DS, and math.FA

Abstract: In 2005 a new topological invariant defined in terms of the Brouwer degree of a determinant map, was introduced by Musso, Pejsachowicz and the first name author for counting the conjugate points along a semi-Riemannian geodesic. This invariant was defined in terms of a suspension of a complexified family of linear second order Dirichlet boundary value problems. In this paper, starting from this result, we generalize this invariant to a general self-adjoint Morse-Sturm system and we prove a new spectral flow formula. Finally we discuss the relation between this spectral flow formula and the Hill's determinant formula and we apply this invariant for detecting instability of periodic orbits of a Hamiltonian system.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube