Papers
Topics
Authors
Recent
Search
2000 character limit reached

Polynomial-degree-robust H(curl)-stability of discrete minimization in a tetrahedron

Published 29 May 2020 in math.NA and cs.NA | (2005.14528v1)

Abstract: We prove that the minimizer in the N\'ed\'elec polynomial space of some degree p > 0 of a discrete minimization problem performs as well as the continuous minimizer in H(curl), up to a constant that is independent of the polynomial degree p. The minimization problems are posed for fields defined on a single non-degenerate tetrahedron in R3 with polynomial constraints enforced on the curl of the field and its tangential trace on some faces of the tetrahedron. This result builds upon [L. Demkowicz, J. Gopalakrishnan, J. Sch\"oberl SIAM J. Numer. Anal. 47 (2009), 3293--3324] and [M. Costabel, A. McIntosh, Math. Z. 265 (2010), 297--320] and is a fundamental ingredient to build polynomial-degree-robust a posteriori error estimators when approximating the Maxwell equations in several regimes leading to a curl-curl problem.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.