Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A simple equilibration procedure leading to polynomial-degree-robust a posteriori error estimators for the curl-curl problem (2108.07552v1)

Published 17 Aug 2021 in math.NA, cs.NA, and math.AP

Abstract: We introduce two a posteriori error estimators for N\'ed\'elec finite element discretizations of the curl-curl problem. These estimators pertain to a new Prager-Synge identity and an associated equilibration procedure. They are reliable and efficient, and the error estimates are polynomial-degree-robust. In addition, when the domain is convex, the reliability constants are fully computable. The proposed error estimators are also cheap and easy to implement, as they are computed by solving divergence-constrained minimization problems over edge patches. Numerical examples highlight our key findings, and show that both estimators are suited to drive adaptive refinement algorithms. Besides, these examples seem to indicate that guaranteed upper bounds can be achieved even in non-convex domains.

Citations (2)

Summary

We haven't generated a summary for this paper yet.