Papers
Topics
Authors
Recent
Search
2000 character limit reached

A simple equilibration procedure leading to polynomial-degree-robust a posteriori error estimators for the curl-curl problem

Published 17 Aug 2021 in math.NA, cs.NA, and math.AP | (2108.07552v1)

Abstract: We introduce two a posteriori error estimators for N\'ed\'elec finite element discretizations of the curl-curl problem. These estimators pertain to a new Prager-Synge identity and an associated equilibration procedure. They are reliable and efficient, and the error estimates are polynomial-degree-robust. In addition, when the domain is convex, the reliability constants are fully computable. The proposed error estimators are also cheap and easy to implement, as they are computed by solving divergence-constrained minimization problems over edge patches. Numerical examples highlight our key findings, and show that both estimators are suited to drive adaptive refinement algorithms. Besides, these examples seem to indicate that guaranteed upper bounds can be achieved even in non-convex domains.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.