Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When Can Self-Attention Be Replaced by Feed Forward Layers? (2005.13895v1)

Published 28 May 2020 in eess.AS, cs.CL, and cs.SD

Abstract: Recently, self-attention models such as Transformers have given competitive results compared to recurrent neural network systems in speech recognition. The key factor for the outstanding performance of self-attention models is their ability to capture temporal relationships without being limited by the distance between two related events. However, we note that the range of the learned context progressively increases from the lower to upper self-attention layers, whilst acoustic events often happen within short time spans in a left-to-right order. This leads to a question: for speech recognition, is a global view of the entire sequence still important for the upper self-attention layers in the encoder of Transformers? To investigate this, we replace these self-attention layers with feed forward layers. In our speech recognition experiments (Wall Street Journal and Switchboard), we indeed observe an interesting result: replacing the upper self-attention layers in the encoder with feed forward layers leads to no performance drop, and even minor gains. Our experiments offer insights to how self-attention layers process the speech signal, leading to the conclusion that the lower self-attention layers of the encoder encode a sufficiently wide range of inputs, hence learning further contextual information in the upper layers is unnecessary.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shucong Zhang (16 papers)
  2. Erfan Loweimi (9 papers)
  3. Peter Bell (60 papers)
  4. Steve Renals (44 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.