Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Polish topology of the isometry group of the infinite dimensional hyperbolic space (2005.12204v3)

Published 25 May 2020 in math.GR, math.DS, and math.MG

Abstract: We consider the isometry group of the infinite dimensional separable hyperbolic space with its Polish topology. This topology is given by the pointwise convergence. For non-locally compact Polish groups, some striking phenomena like automatic continuity or extreme amenability may happen. Our leading idea is to compare this topological group with usual Lie groups on one side and with non-Archimedean infinite dimensional groups like $\mathcal{S}_\infty$, the group of all permutations of a countable set on the other side. Our main results are Automatic continuity (any homomorphism to a separable group is continuous), minimality of the Polish topology, identification of its universal Furstenberg boundary as the closed unit ball of a separable Hilbert space with its weak topology, identification of its universal minimal flow as the completion of some suspension of the action of the additive group of the reals on its universal minimal flow. All along the text, we lead a parallel study with the sibling group of isometries of a separable Hilbert space.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.