Papers
Topics
Authors
Recent
2000 character limit reached

Human Sentence Processing: Recurrence or Attention?

Published 19 May 2020 in cs.CL | (2005.09471v2)

Abstract: Recurrent neural networks (RNNs) have long been an architecture of interest for computational models of human sentence processing. The recently introduced Transformer architecture outperforms RNNs on many natural language processing tasks but little is known about its ability to model human language processing. We compare Transformer- and RNN-based LLMs' ability to account for measures of human reading effort. Our analysis shows Transformers to outperform RNNs in explaining self-paced reading times and neural activity during reading English sentences, challenging the widely held idea that human sentence processing involves recurrent and immediate processing and provides evidence for cue-based retrieval.

Citations (86)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.