Two-Sided Random Matching Markets: Ex-Ante Equivalence of the Deferred Acceptance Procedures
Abstract: Stable matching in a community consisting of $N$ men and $N$ women is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley. When the input preference profile is generated from a distribution, we study the output distribution of two stable matching procedures: women-proposing-deferred-acceptance and men-proposing-deferred-acceptance. We show that the two procedures are ex-ante equivalent: that is, under certain conditions on the input distribution, their output distributions are identical. In terms of technical contributions, we generalize (to the non-uniform case) an integral formula, due to Knuth and Pittel, which gives the probability that a fixed matching is stable. Using an inclusion-exclusion principle on the set of rotations, we give a new formula which gives the probability that a fixed matching is the women/men-optimal stable matching. We show that those two probabilities are equal with an integration by substitution.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.