Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-Sided Matching Markets with Correlated Random Preferences (1904.03890v3)

Published 8 Apr 2019 in cs.DS, cs.CY, cs.DM, and cs.GT

Abstract: Stable matching in a community consisting of men and women is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley, who designed the celebrated deferred acceptance'' algorithm for the problem. In the input, each participant ranks participants of the opposite type, so the input consists of a collection of permutations, representing the preference lists. A bipartite matching is unstable if some man-woman pair is blocking: both strictly prefer each other to their partner in the matching. Stability is an important economics concept in matching markets from the viewpoint of manipulability. The unicity of a stable matching implies non-manipulability, and near-unicity implies limited manipulability, thus these are mathematical properties related to the quality of stable matching algorithms. This paper is a theoretical study of the effect of correlations on approximate manipulability of stable matching algorithms. Our approach is to go beyond worst case, assuming that some of the input preference lists are drawn from a distribution. Our model encompasses a discrete probabilistic process inspired by a popularity model introduced by Immorlica and Mahdian, that provides a way to capture correlation between preference lists. Approximate manipulability is approached from several angles : when all stable partners of a person have approximately the same rank; or when most persons have a unique stable partner. Another quantity of interest is a person's number of stable partners. Our results aim to paint a picture of the manipulability of stable matchings in abeyond worst case'' setting.

Citations (1)

Summary

We haven't generated a summary for this paper yet.