Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Machine Learning for Physics-Informed Generation of Dispersed Multiphase Flow Using Generative Adversarial Networks (2005.05363v1)

Published 11 May 2020 in physics.flu-dyn and physics.comp-ph

Abstract: Fluid flow around a random distribution of stationary spherical particles is a problem of substantial importance in the study of dispersed multiphase flows. In this paper we present a machine learning methodology using Generative Adversarial Network framework and Convolutional Neural Network architecture to recreate particle-resolved fluid flow around a random distribution of monodispersed particles. The model was applied to various Reynolds number and particle volume fraction combinations spanning over a range of [2.69, 172.96] and [0.11, 0.45] respectively. Test performance of the model for the studied cases is very promising.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.