Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak Type Endpoint Estimates for the Commutators of Rough Singular Integral Operators (2005.04614v1)

Published 10 May 2020 in math.CA

Abstract: Let $\Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}{n-1}$, $T_{\Omega}$ be the convolution singular integral operator with kernel $\frac{\Omega(x)}{|x|n}$. For $b\in{\rm BMO}(\mathbb{R}n)$, let $T_{\Omega,\,b}$ be the commutator of $T_{\Omega}$. In this paper, by establishing suitable sparse dominations, the authors establish some weak type endpoint estimates of $L\log L$ type for $T_{\Omega,\,b}$ when $\Omega\in Lq(S{n-1})$ for some $q\in (1,\,\infty]$.

Summary

We haven't generated a summary for this paper yet.