Papers
Topics
Authors
Recent
2000 character limit reached

Riemann-Hilbert approach and N-soliton formula for the N-component Fokas-Lenells equations

Published 7 May 2020 in nlin.SI, math-ph, math.AP, and math.MP | (2005.03319v1)

Abstract: In this work, the generalized $N$-component Fokas-Lenells(FL) equations, which have been studied by Guo and Ling (2012 J. Math. Phys. 53 (7) 073506) for $N=2$, are first investigated via Riemann-Hilbert(RH) approach. The main purpose of this is to study the soliton solutions of the coupled Fokas-Lenells(FL) equations for any positive integer $N$, which have more complex linear relationship than the analogues reported before. We first analyze the spectral analysis of the Lax pair associated with a $(N+1)\times (N+1)$ matrix spectral problem for the $N$-component FL equations. Then, a kind of RH problem is successfully formulated. By introducing the special conditions of irregularity and reflectionless case, the $N$-soliton solution formula of the equations are derived through solving the corresponding RH problem. Furthermore, take $N=2,3$ and $4$ for examples, the localized structures and dynamic propagation behavior of their soliton solutions and their interactions are discussed by some graphical analysis.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.