Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations (2005.02311v5)

Published 5 May 2020 in math.AP and math.PR

Abstract: One proves the existence and uniqueness of a generalized (mild) solution for the nonlinear Fokker-Planck equation (FPE) \begin{align*} &u_t-\Delta (\beta(u))+{\mathrm{ div}}(D(x)b(u)u)=0, \quad t\geq0,\ x\in\mathbb{R}d,\ d\ne2, \ &u(0,\cdot)=u_0,\mbox{in }\mathbb{R}d, \end{align*} where $u_0\in L1(\mathbb{R}d)$, $\beta\in C2(\mathbb{R})$ is a nondecreasing function, $b\in C1$, bounded, $b\ge0$, $D\in {L\infty}(\mathbb{R}d;\mathbb{R}d)$, ${\rm div}\,D\in L2(\mathbb{R}d)+L\infty(\mathbb{R}d),$ with ${({\rm div}\, D)-}\in L\infty(\mathbb{R}d)$, $\beta$ strictly increasing, if $b$ is not constant. Moreover, $t\to u(t,u_0)$ is a semigroup of contractions in $L1(\mathbb{R}d)$, which leaves invariant the set of probability density functions in $\mathbb{R}d$. If ${\rm div}\,D\ge0$, $\beta'(r)\ge a|r|{\alpha-1}$, and $|\beta(r)|\le C r\alpha$, $\alpha\ge1,$ $d\ge3$, then $|u(t)|_{L\infty}\le Ct{-\frac d{d+(\alpha-1)d}}\ |u_0|{\frac2{2+(m-1)d}},$ $t>0$, and, if $D\in L2(\mathbb{R}d;\mathbb{R}d)$, the existence extends to initial data $u_0$ in the space $\mathcal{M}_b$ of bounded measures in $\mathbb{R}d$. As a consequence for arbitrary initial laws, we obtain weak solutions to a class of McKean-Vlasov SDEs with coefficients which have singular dependence on the time marginal laws.

Summary

We haven't generated a summary for this paper yet.