Uniqueness for nonlinear Fokker-Planck equations and for McKean-Vlasov SDEs: The degenerate case (2203.00122v3)
Abstract: This work is concerned with the existence and uniqueness of generalized (mild or distributional) solutions to (possibly degenerate) Fokker-Planck equations $\rho_t-\Delta\beta(\rho)+{\rm div}(Db(\rho)\rho)=0$ in $(0,\infty)\times\mathbb{R}d,$ $\rho(0,x) \equiv \rho_0(x)$. Under suitable assumptions on $\beta:\mathbb{R}\to\mathbb{R},\,b:\mathbb{R}\to\mathbb{R}$ and $D:\mathbb{R}d\to\mathbb{R}d$, $d\ge1$, this equation generates a unique flow $\rho(t)=S(t)\rho_0:[0,\infty)\to L1(\mathbb{R}d)$ as a mild solution in the sense of nonlinear semigroup theory. This flow is also unique in the class of $L\infty((0,T)\times\mathbb{R}d)\cap L1((0,T)\times\mathbb{R}d),$ $\forall T>0$, Schwartz distributional solutions on $(0,\infty)\times\mathbb{R}d$. Moreover, for $\rho_0\in L1(\mathbb{R}d)\cap H{-1}(\mathbb{R}d)$, $t\to S(t)\rho_0$ is differentiable from the right on $[0,\infty)$ in $H{-1}(\mathbb{R}d)$-norm. As a main application, the weak uniqueness of the corresponding McKean-Vlasov SDEs is proven.