Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

A Deep Convolutional Neural Network for COVID-19 Detection Using Chest X-Rays (2005.01578v4)

Published 30 Apr 2020 in eess.IV, cs.CV, and cs.LG

Abstract: Purpose: We present image classifiers based on Dense Convolutional Networks and transfer learning to classify chest X-ray images according to three labels: COVID-19, pneumonia and normal. Methods: We fine-tuned neural networks pretrained on ImageNet and applied a twice transfer learning approach, using NIH ChestX-ray14 dataset as an intermediate step. We also suggested a novelty called output neuron keeping, which changes the twice transfer learning technique. In order to clarify the modus operandi of the models, we used Layer-wise Relevance Propagation (LRP) to generate heatmaps. Results: We were able to reach test accuracy of 100% on our test dataset. Twice transfer learning and output neuron keeping showed promising results improving performances, mainly in the beginning of the training process. Although LRP revealed that words on the X-rays can influence the networks' predictions, we discovered this had only a very small effect on accuracy. Conclusion: Although clinical studies and larger datasets are still needed to further ensure good generalization, the state-of-the-art performances we achieved show that, with the help of artificial intelligence, chest X-rays can become a cheap and accurate auxiliary method for COVID-19 diagnosis. Heatmaps generated by LRP improve the interpretability of the deep neural networks and indicate an analytical path for future research on diagnosis. Twice transfer learning with output neuron keeping improved performances.

Citations (138)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.