Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Stochastic MPC with Distributionally Robust Chance Constraints (2005.00313v2)

Published 1 May 2020 in math.OC

Abstract: In this paper we discuss distributional robustness in the context of stochastic model predictive control (SMPC) for linear time-invariant systems. We derive a simple approximation of the MPC problem under an additive zero-mean i.i.d. noise with quadratic cost. Due to the lack of distributional information, chance constraints are enforced as distributionally robust (DR) chance constraints, which we opt to unify with the concept of probabilistic reachable sets (PRS). For Wasserstein ambiguity sets, we propose a simple convex optimization problem to compute the DR-PRS based on finitely many disturbance samples. The paper closes with a numerical example of a double integrator system, highlighting the reliability of the DR-PRS w.r.t. the Wasserstein set and performance of the resulting SMPC.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.