Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing catastrophic forgetting with learning on synthetic data (2004.14046v1)

Published 29 Apr 2020 in cs.LG and stat.ML

Abstract: Catastrophic forgetting is a problem caused by neural networks' inability to learn data in sequence. After learning two tasks in sequence, performance on the first one drops significantly. This is a serious disadvantage that prevents many deep learning applications to real-life problems where not all object classes are known beforehand; or change in data requires adjustments to the model. To reduce this problem we investigate the use of synthetic data, namely we answer a question: Is it possible to generate such data synthetically which learned in sequence does not result in catastrophic forgetting? We propose a method to generate such data in two-step optimisation process via meta-gradients. Our experimental results on Split-MNIST dataset show that training a model on such synthetic data in sequence does not result in catastrophic forgetting. We also show that our method of generating data is robust to different learning scenarios.

Citations (33)

Summary

We haven't generated a summary for this paper yet.