Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Condensed Composite Memory Continual Learning (2102.09890v2)

Published 19 Feb 2021 in cs.LG and cs.AI

Abstract: Deep Neural Networks (DNNs) suffer from a rapid decrease in performance when trained on a sequence of tasks where only data of the most recent task is available. This phenomenon, known as catastrophic forgetting, prevents DNNs from accumulating knowledge over time. Overcoming catastrophic forgetting and enabling continual learning is of great interest since it would enable the application of DNNs in settings where unrestricted access to all the training data at any time is not always possible, e.g. due to storage limitations or legal issues. While many recently proposed methods for continual learning use some training examples for rehearsal, their performance strongly depends on the number of stored examples. In order to improve performance of rehearsal for continual learning, especially for a small number of stored examples, we propose a novel way of learning a small set of synthetic examples which capture the essence of a complete dataset. Instead of directly learning these synthetic examples, we learn a weighted combination of shared components for each example that enables a significant increase in memory efficiency. We demonstrate the performance of our method on commonly used datasets and compare it to recently proposed related methods and baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Felix Wiewel (6 papers)
  2. Bin Yang (320 papers)
Citations (32)

Summary

We haven't generated a summary for this paper yet.