Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence Analysis of Extended LOBPCG for Computing Extreme Eigenvalues (2004.14002v1)

Published 29 Apr 2020 in math.NA and cs.NA

Abstract: This paper is concerned with the convergence analysis of an extended variation of the locally optimal preconditioned conjugate gradient method (LOBPCG) for the extreme eigenvalue of a Hermitian matrix polynomial which admits some extended form of Rayleigh quotient. This work is a generalization of the analysis by Ovtchinnikov (SIAM J. Numer. Anal., 46(5):2567-2592, 2008). As instances, the algorithms for definite matrix pairs and hyperbolic quadratic matrix polynomials are shown to be globally convergent and to have an asymptotically local convergence rate. Also, numerical examples are given to illustrate the convergence.

Citations (1)

Summary

We haven't generated a summary for this paper yet.