On Rayleigh Quotient Iteration for Dual Quaternion Hermitian Eigenvalue Problem (2310.20290v8)
Abstract: The application of eigenvalue theory to dual quaternion Hermitian matrices holds significance in the realm of multi-agent formation control. In this paper, we study the Rayleigh quotient iteration (RQI) for solving the right eigenpairs of dual quaternion Hermitian matrices. Combined with dual representation, the RQI algorithm can effectively compute the eigenvalue along with the associated eigenvector of the dual quaternion Hermitian matrices. Furthermore, by utilizing minimal residual property of the Rayleigh Quotient, a convergence analysis of the Rayleigh quotient iteration is derived. Numerical examples are provided to illustrate the high accuracy and low CPU time cost of the proposed Rayleigh quotient iteration compared with the power method for solving the dual quaternion Hermitian eigenvalue problem.
- On multistep Rayleigh quotient iterations for Hermitian eigenvalue problems. Comput. Math. Appl. 77(9), 2396–2406 (2019)
- Inexact inverse iteration for symmetric matrices. Linear Algebra Appl. 416(2-3), 389–413 (2006)
- G. Brambley, J. Kim. Unit dual quaternion-based pose optimisation for visual runway observations. IET Cyber-Systems and Robotics 2(4), 181–189 (2020)
- M. Bryson, S. Sukkarieh. Building a robust implementation of bearing-only inertial SLAM for a UAV. J. Field Robot. 24(1-2), 113–143 (2007)
- Stereo visual SLAM based on unscented dual quaternion filtering. 2019 22th International Conference on Information Fusion (FUSION) 1–8 (2019)
- Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE T. Robot. 32(6), 1309–1332 (2016)
- Initialization techniques for 3D SLAM: A survey on rotation estimation and its use in pose graph optimization. 2015 IEEE International Conference on Robotics and Automation (ICRA) 4597–4604 (2015)
- Dual quaternion matrix equation AXB=C𝐴𝑋𝐵𝐶AXB=Citalic_A italic_X italic_B = italic_C with applications. Symmetry 16(3), (2024)
- Dual quaternion-based graphical SLAM. Robot. Auton. Syst. 77, 15–24 (2016)
- Clifford. Preliminary sketch of biquaternions. P. Lond. Math. Soc. 1(1), 381–395 (1871)
- C.F. Cui, L.Q. Qi. A power method for computing the dominant eigenvalue of a dual quaternion Hermitian matrix. arXiv:2304.04355, (2023)
- K. Daniilidis. Hand-eye calibration using dual quaternions. Ind. Robot. 18(3), 286–298 (1999)
- S. Demir. Matrix realization of dual quaternionic electromagnetism. Cent. Eur. Phys. 5, 487–506 (2007)
- Computing partial quaternion eigenpairs with quaternion shift. J. Sci. Comput. 97(2), 1–22 (2023)
- B. Kenright. A biginners guide to dual-quaternions. 20th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen, Czech (2012)
- On the power method for quaternion right eigenvalue problem. J. Comput. Appl. Math. 345, 59–69 (2019)
- Distributed formation control of multi-agent systems using complex laplacian. IEEE T. Automat. Contr. 59(7), 1765–1777 (2014)
- Singular values of dual quaternion matrices and their low-rank approximations. Numer. Funct. Anal. Optim. 43(12), 1423–1458 (2022)
- Y. Notay. Convergence analysis of inexact Rayleigh quotient iteration. SIAM J. Matrix Anal. Appl. 24(3), 627–644 (2003)
- B. N. Parlett. The symmetric eigenvalue problem. Society for Industrial and Applied Mathematics (1998)
- Dual quaternions and dual quaternion vectors. Commun. Appl. Math. Comput. 4(4), 1494–1508 (2022)
- L.Q. Qi, Z.Y. Luo. Eigenvalues and singular values of dual quaternion matrices. Pac. J. Optim. 19(2), 257–272 (2023)
- Dual quaternion matrices in multi-agent formation control. arXiv:2204.01229, (2022)
- Y. Saad. Numerical methods for large eigenvalue problems: revised edition. Society for Industrial and Applied Mathematics (2011)
- P. Smit, M.H.C. Paardekooper. The effects of inexact solvers in algorithms for symmetric eigenvalue problems. Linear Algebra Appl. 287(1-3), 337–357 (1999)
- A dual quaternion solution to attitude and position control for rigid-body coordination. IEEE T. Robot. 28(5), 1162–1170 (2012)