Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Input-Sparsity Low Rank Approximation in Schatten Norm (2004.12646v3)

Published 27 Apr 2020 in cs.DS

Abstract: We give the first input-sparsity time algorithms for the rank-$k$ low rank approximation problem in every Schatten norm. Specifically, for a given $n\times n$ matrix $A$, our algorithm computes $Y,Z\in \mathbb{R}{n\times k}$, which, with high probability, satisfy $|A-YZT|_p \leq (1+\epsilon)|A-A_k|p$, where $|M|_p = \left (\sum{i=1}n \sigma_i(M)p \right ){1/p}$ is the Schatten $p$-norm of a matrix $M$ with singular values $\sigma_1(M), \ldots, \sigma_n(M)$, and where $A_k$ is the best rank-$k$ approximation to $A$. Our algorithm runs in time $\tilde{O}(\operatorname{nnz}(A) + mn{\alpha_p}\operatorname{poly}(k/\epsilon))$, where $\alpha_p = 0$ for $p\in [1,2)$ and $\alpha_p = (\omega-1)(1-2/p)$ for $p>2$ and $\omega \approx 2.374$ is the exponent of matrix multiplication. For the important case of $p = 1$, which corresponds to the more "robust" nuclear norm, we obtain $\tilde{O}(\operatorname{nnz}(A) + m \cdot \operatorname{poly}(k/\epsilon))$ time, which was previously only known for the Frobenius norm ($p = 2$). Moreover, since $\alpha_p < \omega - 1$ for every $p$, our algorithm has a better dependence on $n$ than that in the singular value decomposition for every $p$. Crucial to our analysis is the use of dimensionality reduction for Ky-Fan $p$-norms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yi Li (483 papers)
  2. David Woodruff (27 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.