Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hardness of Low Rank Approximation of Entrywise Transformed Matrix Products (2311.01960v1)

Published 3 Nov 2023 in cs.DS and cs.LG

Abstract: Inspired by fast algorithms in natural language processing, we study low rank approximation in the entrywise transformed setting where we want to find a good rank $k$ approximation to $f(U \cdot V)$, where $U, V\top \in \mathbb{R}{n \times r}$ are given, $r = O(\log(n))$, and $f(x)$ is a general scalar function. Previous work in sublinear low rank approximation has shown that if both (1) $U = V\top$ and (2) $f(x)$ is a PSD kernel function, then there is an $O(nk{\omega-1})$ time constant relative error approximation algorithm, where $\omega \approx 2.376$ is the exponent of matrix multiplication. We give the first conditional time hardness results for this problem, demonstrating that both conditions (1) and (2) are in fact necessary for getting better than $n{2-o(1)}$ time for a relative error low rank approximation for a wide class of functions. We give novel reductions from the Strong Exponential Time Hypothesis (SETH) that rely on lower bounding the leverage scores of flat sparse vectors and hold even when the rank of the transformed matrix $f(UV)$ and the target rank are $n{o(1)}$, and when $U = V\top$. Furthermore, even when $f(x) = xp$ is a simple polynomial, we give runtime lower bounds in the case when $U \neq V\top$ of the form $\Omega(\min(n{2-o(1)}, \Omega(2p)))$. Lastly, we demonstrate that our lower bounds are tight by giving an $O(n \cdot \text{poly}(k, 2p, 1/\epsilon))$ time relative error approximation algorithm and a fast $O(n \cdot \text{poly}(k, p, 1/\epsilon))$ additive error approximation using fast tensor-based sketching. Additionally, since our low rank algorithms rely on matrix-vector product subroutines, our lower bounds extend to show that computing $f(UV)W$, for even a small matrix $W$, requires $\Omega(n{2-o(1)})$ time.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Tamas Sarlos (40 papers)
  2. Xingyou Song (32 papers)
  3. David Woodruff (27 papers)
  4. Qiuyi (5 papers)
  5. Zhang (91 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.