Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Restoring number conservation in quadratic bosonic Hamiltonians with dualities (2004.07850v2)

Published 16 Apr 2020 in quant-ph and cond-mat.stat-mech

Abstract: Number-non-conserving terms in quadratic bosonic Hamiltonians can induce unwanted dynamical instabilities. By exploiting the pseudo-Hermitian structure built in to these Hamiltonians, we show that as long as dynamical stability holds, one may always construct a non-trivial dual (unitarily equivalent) number-conserving quadratic bosonic Hamiltonian. We exemplify this construction for a gapped harmonic chain and a bosonic analogue to Kitaev's Majorana chain. Our duality may be used to identify local number-conserving models that approximate stable bosonic Hamiltonians without the need for parametric amplification and to implement non-Hermitian $\mathcal{P}\mathcal{T}$-symmetric dynamics in non-dissipative number-conserving bosonic systems. Implications for computing topological invariants are addressed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.