Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Many-Objective Evolutionary Algorithms by Means of Edge-Rotated Cones (2004.06941v2)

Published 15 Apr 2020 in cs.NE

Abstract: Given a point in $m$-dimensional objective space, any $\varepsilon$-ball of a point can be partitioned into the incomparable, the dominated and dominating region. The ratio between the size of the incomparable region, and the dominated (and dominating) region decreases proportionally to $1/2{m-1}$, i.e., the volume of the Pareto dominating orthant as compared to all other volumes. Due to this reason, it gets increasingly unlikely that dominating points can be found by random, isotropic mutations. As a remedy to stagnation of search in many objective optimization, in this paper, we suggest to enhance the Pareto dominance order by involving an obtuse convex dominance cone in the convergence phase of an evolutionary optimization algorithm. We propose edge-rotated cones as generalizations of Pareto dominance cones for which the opening angle can be controlled by a single parameter only. The approach is integrated in several state-of-the-art multi-objective evolutionary algorithms (MOEAs) and tested on benchmark problems with four, five, six and eight objectives. Computational experiments demonstrate the ability of these edge-rotated cones to improve the performance of MOEAs on many-objective optimization problems.

Summary

We haven't generated a summary for this paper yet.