Multi-marginal Optimal Transport with a Tree-structured cost and the Schrödinger Bridge Problem (2004.06909v3)
Abstract: The optimal transport problem has recently developed into a powerful framework for various applications in estimation and control. Many of the recent advances in the theory and application of optimal transport are based on regularizing the problem with an entropy term, which connects it to the Schr\"odinger bridge problem and thus to stochastic optimal control. Moreover, the entropy regularization makes the otherwise computationally demanding optimal transport problem feasible even for large scale settings. This has lead to an accelerated development of optimal transport based methods in a broad range of fields. Many of these applications have a underlying graph structure, for instance information fusion and tracking problems can be described by trees. In this work we consider multi-marginal optimal transport problems with a cost function that decouples according to a tree structure. The entropy regularized multi-marginal optimal transport problem can be viewed as a generalization of the Schr\"odinger bridge problem with the same tree-structure, and by utilizing these connections we extend the computational methods for the classical optimal transport problem in order to solve structured multi-marginal optimal transport problems in an efficient manner. In particular, the algorithm requires only matrix-vector multiplications of relatively small dimensions. We show that the multi-marginal regularization introduces less diffusion, compared to the commonly used pairwise regularization, and is therefore more suitable for many applications. Numerical examples illustrate this, and we finally apply the proposed framework for tracking of an ensemble of indistinguishable agents.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.