Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Reinforcement Learning via Reasoning from Demonstration (2004.05512v1)

Published 12 Apr 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Demonstration is an appealing way for humans to provide assistance to reinforcement-learning agents. Most approaches in this area view demonstrations primarily as sources of behavioral bias. But in sparse-reward tasks, humans seem to treat demonstrations more as sources of causal knowledge. This paper proposes a framework for agents that benefit from demonstration in this human-inspired way. In this framework, agents develop causal models through observation, and reason from this knowledge to decompose tasks for effective reinforcement learning. Experimental results show that a basic implementation of Reasoning from Demonstration (RfD) is effective in a range of sparse-reward tasks.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)