Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Interfaces and the extended Hilbert space of Chern-Simons theory (2004.05123v2)

Published 10 Apr 2020 in hep-th and cond-mat.str-el

Abstract: The low energy effective field theories of $(2+1)$ dimensional topological phases of matter provide powerful avenues for investigating entanglement in their ground states. In \cite{Fliss:2017wop} the entanglement between distinct Abelian topological phases was investigated through Abelian Chern-Simons theories equipped with a set of topological boundary conditions (TBCs). In the present paper we extend the notion of a TBC to non-Abelian Chern-Simons theories, providing an effective description for a class of gapped interfaces across non-Abelian topological phases. These boundary conditions furnish a defining relation for the extended Hilbert space of the quantum theory and allow the calculation of entanglement directly in the gauge theory. Because we allow for trivial interfaces, this includes a generic construction of the extended Hilbert space in any (compact) Chern-Simons theory quantized on a Riemann surface. Additionally, this provides a constructive and principled definition for the Hilbert space of effective ground states of gapped phases of matter glued along gapped interfaces. Lastly, we describe a generalized notion of surgery, adding a powerful tool from topological field theory to the gapped interface toolbox.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.