Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Solving quantum trajectories for systems with linear Heisenberg-picture dynamics and Gaussian measurement noise (2004.02387v3)

Published 6 Apr 2020 in quant-ph

Abstract: We study solutions to the quantum trajectory evolution of $N$-mode open quantum systems possessing a time-independent Hamiltonian, linear Heisenberg-picture dynamics, and Gaussian measurement noise. In terms of the mode annihilation and creation operators, a system will have linear Heisenberg-picture dynamics under two conditions. First, the Hamiltonian must be quadratic. Second, the Lindblad operators describing the coupling to the environment (including those corresponding to the measurement) must be linear. In cases where we can solve the $2N$-degree polynomials that arise in our calculations, we provide an analytical solution for initial states that are arbitrary (i.e. they are not required to have Gaussian Wigner functions). The solution takes the form of an evolution operator, with the measurement-result dependence captured in $2N$ stochastic integrals over these classical random signals. The solutions also allow the POVM, which generates the probabilities of obtaining measurement outcomes, to be determined. To illustrate our results, we solve some single-mode example systems, with the POVMs being of practical relevance to the inference of an initial state, via quantum state tomography. Our key tool is the representation of mixed states of quantum mechanical oscillators as state vectors rather than state matrices (albeit in a larger Hilbert space). Together with methods from Lie algebra, this allows a more straightforward manipulation of the exponential operators comprising the system evolution than is possible in the original Hilbert space.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube