Papers
Topics
Authors
Recent
Search
2000 character limit reached

Estimation of Integrated Volatility Functionals with Kernel Spot Volatility Estimators

Published 13 Jul 2024 in econ.EM, math.ST, and stat.TH | (2407.09759v2)

Abstract: For a multidimensional It^o semimartingale, we consider the problem of estimating integrated volatility functionals. Jacod and Rosenbaum (2013) studied a plug-in type of estimator based on a Riemann sum approximation of the integrated functional and a spot volatility estimator with a forward uniform kernel. Motivated by recent results that show that spot volatility estimators with general two-side kernels of unbounded support are more accurate, in this paper, an estimator using a general kernel spot volatility estimator as the plug-in is considered. A biased central limit theorem for estimating the integrated functional is established with an optimal convergence rate. Unbiased central limit theorems for estimators with proper de-biasing terms are also obtained both at the optimal convergence regime for the bandwidth and when applying undersmoothing. Our results show that one can significantly reduce the estimator's bias by adopting a general kernel instead of the standard uniform kernel. Our proposed bias-corrected estimators are found to maintain remarkable robustness against bandwidth selection in a variety of sampling frequencies and functions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.