Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

k-Median clustering under discrete Fréchet and Hausdorff distances (2004.00722v1)

Published 1 Apr 2020 in cs.CG

Abstract: We give the first near-linear time $(1+\eps)$-approximation algorithm for $k$-median clustering of polygonal trajectories under the discrete Fr\'{e}chet distance, and the first polynomial time $(1+\eps)$-approximation algorithm for $k$-median clustering of finite point sets under the Hausdorff distance, provided the cluster centers, ambient dimension, and $k$ are bounded by a constant. The main technique is a general framework for solving clustering problems where the cluster centers are restricted to come from a \emph{simpler} metric space. We precisely characterize conditions on the simpler metric space of the cluster centers that allow faster $(1+\eps)$-approximations for the $k$-median problem. We also show that the $k$-median problem under Hausdorff distance is \textsc{NP-Hard}.

Citations (11)

Summary

We haven't generated a summary for this paper yet.