Papers
Topics
Authors
Recent
2000 character limit reached

On the hardness of computing an average curve

Published 21 Feb 2019 in cs.CG | (1902.08053v2)

Abstract: We study the complexity of clustering curves under $k$-median and $k$-center objectives in the metric space of the Fr\'echet distance and related distance measures. Building upon recent hardness results for the minimum-enclosing-ball problem under the Fr\'echet distance, we show that also the $1$-median problem is NP-hard. Furthermore, we show that the $1$-median problem is W[1]-hard with the number of curves as parameter. We show this under the discrete and continuous Fr\'echet and Dynamic Time Warping (DTW) distance. This yields an independent proof of an earlier result by Bulteau et al. from 2018 for a variant of DTW that uses squared distances, where the new proof is both simpler and more general. On the positive side, we give approximation algorithms for problem variants where the center curve may have complexity at most $\ell$ under the discrete Fr\'echet distance. In particular, for fixed $k,\ell$ and $\varepsilon$, we give $(1+\varepsilon)$-approximation algorithms for the $(k,\ell)$-median and $(k,\ell)$-center objectives and a polynomial-time exact algorithm for the $(k,\ell)$-center objective.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.