Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Asymptotics for 2D whispering gallery modes in optical micro-disks with radially varying index (2003.14315v2)

Published 31 Mar 2020 in math.SP, math-ph, and math.MP

Abstract: Whispering gallery modes [WGM] are resonant modes displaying special features: They concentrate along the boundary of the optical cavity at high polar frequencies and they are associated with complex scattering resonances very close to the real axis. As a classical simplification of the full Maxwell system, we consider two-dimensional Helmholtz equations governing transverse electric [TE] or magnetic [TM] modes. Even in this 2D framework, very few results provide asymptotic expansion of WGM resonances at high polar frequency $m\to\infty$ for cavities with radially varying optical index. In this work, using a direct Schr\"odinger analogy we highlight three typical behaviors in such optical micro-disks, depending on the sign of an effective curvature that takes into account the radius of the disk and the values of the optical index and its derivative. Accordingly, this corresponds to abruptly varying effective potentials (step linear or step harmonic) or more classical harmonic potentials, leading to three distinct asymptotic expansions for ground state energies. Using multiscale expansions, we design a unified procedure to construct families of quasi-resonances and associate quasi-modes that have the WGM structure and satisfy eigenequations modulo a super-algebraically small residual $O(m{-\infty})$. We show using the black box scattering approach that quasi-resonances are $O(m{-\infty})$ close to true resonances.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.