Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SCT: Set Constrained Temporal Transformer for Set Supervised Action Segmentation (2003.14266v1)

Published 31 Mar 2020 in cs.CV

Abstract: Temporal action segmentation is a topic of increasing interest, however, annotating each frame in a video is cumbersome and costly. Weakly supervised approaches therefore aim at learning temporal action segmentation from videos that are only weakly labeled. In this work, we assume that for each training video only the list of actions is given that occur in the video, but not when, how often, and in which order they occur. In order to address this task, we propose an approach that can be trained end-to-end on such data. The approach divides the video into smaller temporal regions and predicts for each region the action label and its length. In addition, the network estimates the action labels for each frame. By measuring how consistent the frame-wise predictions are with respect to the temporal regions and the annotated action labels, the network learns to divide a video into class-consistent regions. We evaluate our approach on three datasets where the approach achieves state-of-the-art results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mohsen Fayyaz (31 papers)
  2. Juergen Gall (121 papers)
Citations (65)

Summary

We haven't generated a summary for this paper yet.