Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Information-Theoretic Lower Bounds for Zero-Order Stochastic Gradient Estimation (2003.13881v2)

Published 31 Mar 2020 in cs.LG and stat.ML

Abstract: In this paper we analyze the necessary number of samples to estimate the gradient of any multidimensional smooth (possibly non-convex) function in a zero-order stochastic oracle model. In this model, an estimator has access to noisy values of the function, in order to produce the estimate of the gradient. We also provide an analysis on the sufficient number of samples for the finite difference method, a classical technique in numerical linear algebra. For $T$ samples and $d$ dimensions, our information-theoretic lower bound is $\Omega(\sqrt{d/T})$. We show that the finite difference method for a bounded-variance oracle has rate $O(d{4/3}/\sqrt{T})$ for functions with zero third and higher order derivatives. These rates are tight for Gaussian oracles. Thus, the finite difference method is not minimax optimal, and therefore there is space for the development of better gradient estimation methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.