Papers
Topics
Authors
Recent
Search
2000 character limit reached

MixedGrad: An O(1/T) Convergence Rate Algorithm for Stochastic Smooth Optimization

Published 26 Jul 2013 in cs.LG and math.OC | (1307.7192v1)

Abstract: It is well known that the optimal convergence rate for stochastic optimization of smooth functions is $O(1/\sqrt{T})$, which is same as stochastic optimization of Lipschitz continuous convex functions. This is in contrast to optimizing smooth functions using full gradients, which yields a convergence rate of $O(1/T2)$. In this work, we consider a new setup for optimizing smooth functions, termed as {\bf Mixed Optimization}, which allows to access both a stochastic oracle and a full gradient oracle. Our goal is to significantly improve the convergence rate of stochastic optimization of smooth functions by having an additional small number of accesses to the full gradient oracle. We show that, with an $O(\ln T)$ calls to the full gradient oracle and an $O(T)$ calls to the stochastic oracle, the proposed mixed optimization algorithm is able to achieve an optimization error of $O(1/T)$.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.