Papers
Topics
Authors
Recent
2000 character limit reached

A solvable class of renewal processes

Published 29 Mar 2020 in math.PR | (2003.13053v2)

Abstract: When the distribution of the inter-arrival times of a renewal process is a mixture of geometric laws, we prove that the renewal function of the process is given by the moments of a probability measure which is explicitly related to the mixture distribution. We also present an analogous result in the continuous case when the inter-arrival law is a mixture of exponential laws. We then observe that the above discrete class of renewal processes provides a solvable family of random polymers. Namely, we obtain an exact representation of the partition function of polymers pinned at sites of the aforementioned renewal processes. In the particular case where the mixture measure is a generalized Arcsine law, the computations can be explicitly handled.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.