Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Time Series Data Cleaning: From Anomaly Detection to Anomaly Repairing (Technical Report) (2003.12396v1)

Published 27 Mar 2020 in cs.DB

Abstract: Errors are prevalent in time series data, such as GPS trajectories or sensor readings. Existing methods focus more on anomaly detection but not on repairing the detected anomalies. By simply filtering out the dirty data via anomaly detection, applications could still be unreliable over the incomplete time series. Instead of simply discarding anomalies, we propose to (iteratively) repair them in time series data, by creatively bonding the beauty of temporal nature in anomaly detection with the widely considered minimum change principle in data repairing. Our major contributions include: (1) a novel framework of iterative minimum repairing (IMR) over time series data, (2) explicit analysis on convergence of the proposed iterative minimum repairing, and (3) efficient estimation of parameters in each iteration. Remarkably, with incremental computation, we reduce the complexity of parameter estimation from O(n) to O(1). Experiments on real datasets demonstrate the superiority of our proposal compared to the state-of-the-art approaches. In particular, we show that (the proposed) repairing indeed improves the time series classification application.

Citations (116)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.