Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Wilf equivalences between vincular patterns in inversion sequences (2003.11533v1)

Published 25 Mar 2020 in math.CO

Abstract: Inversion sequences are finite sequences of non-negative integers, where the value of each entry is bounded from above by its position. Patterns in inversion sequences have been studied by Corteel-Martinez-Savage-Weselcouch and Mansour-Shattuck in the classical case, where patterns can occur in any positions, and by Auli-Elizalde in the consecutive case, where only adjacent entries can form an occurrence of a pattern. These papers classify classical and consecutive patterns of length 3 into Wilf equivalence classes according to the number of inversion sequences avoiding them. In this paper we consider vincular patterns in inversion sequences, which, in analogy to Babson-Steingr\'{\i}msson patterns in permutations, require only certain entries of an occurrence to be adjacent, and thus generalize both classical and consecutive patterns. Solving a conjecture of Lin and Yan, we provide a complete classification of vincular patterns of length 3 in inversion sequences into Wilf equivalence classes, and into more restrictive classes that consider the number of occurrences of the pattern and the positions of such occurrences. We find the first known instance of patterns in inversion sequences where these two more restrictive classes do not coincide.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.