Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resilient Distributed Diffusion in Networks with Adversaries (2003.10563v1)

Published 23 Mar 2020 in cs.MA

Abstract: In this paper, we study resilient distributed diffusion for multi-task estimation in the presence of adversaries where networked agents must estimate distinct but correlated states of interest by processing streaming data. We show that in general diffusion strategies are not resilient to malicious agents that do not adhere to the diffusion-based information processing rules. In particular, by exploiting the adaptive weights used for diffusing information, we develop time-dependent attack models that drive normal agents to converge to states selected by the attacker. We show that an attacker that has complete knowledge of the system can always drive its targeted agents to its desired estimates. Moreover, an attacker that does not have complete knowledge of the system including streaming data of targeted agents or the parameters they use in diffusion algorithms, can still be successful in deploying an attack by approximating the needed information. The attack models can be used for both stationary and non-stationary state estimation.In addition, we present and analyze a resilient distributed diffusion algorithm that is resilient to any data falsification attack in which the number of compromised agents in the local neighborhood of a normal agent is bounded. The proposed algorithm guarantees that all normal agents converge to their true target states if appropriate parameters are selected. We also analyze trade-off between the resilience of distributed diffusion and its performance in terms of steady-state mean-square-deviation (MSD) from the correct estimates. Finally, we evaluate the proposed attack models and resilient distributed diffusion algorithm using stationary and non-stationary multi-target localization.

Citations (28)

Summary

We haven't generated a summary for this paper yet.