Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 469 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Borrowing from Supplemental Sources to Estimate Causal Effects from a Primary Data Source (2003.09680v1)

Published 21 Mar 2020 in stat.ME

Abstract: The increasing multiplicity of data sources offers exciting possibilities in estimating the effects of a treatment, intervention, or exposure, particularly if observational and experimental sources could be used simultaneously. Borrowing between sources can potentially result in more efficient estimators, but it must be done in a principled manner to mitigate increased bias and Type I error. Furthermore, when the effect of treatment is confounded, as in observational sources or in clinical trials with noncompliance, causal effect estimators are needed to simultaneously adjust for confounding and to estimate effects across data sources. We consider the problem of estimating causal effects from a primary source and borrowing from any number of supplemental sources. We propose using regression-based estimators that borrow based on assuming exchangeability of the regression coefficients and parameters between data sources. Borrowing is accomplished with multisource exchangeability models and Bayesian model averaging. We show via simulation that a Bayesian linear model and Bayesian additive regression trees both have desirable properties and borrow under appropriate circumstances. We apply the estimators to recently completed trials of very low nicotine content cigarettes investigating their impact on smoking behavior.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.