Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the limitations of single-step drift and minorization in Markov chain convergence analysis (2003.09555v2)

Published 21 Mar 2020 in math.PR, math.ST, and stat.TH

Abstract: Over the last three decades, there has been a considerable effort within the applied probability community to develop techniques for bounding the convergence rates of general state space Markov chains. Most of these results assume the existence of drift and minorization (d&m) conditions. It has often been observed that convergence rate bounds based on single-step d&m tend to be overly conservative, especially in high-dimensional situations. This article builds a framework for studying this phenomenon. It is shown that any convergence rate bound based on a set of d&m conditions cannot do better than a certain unknown optimal bound. Strategies are designed to put bounds on the optimal bound itself, and this allows one to quantify the extent to which a d&m-based convergence rate bound can be sharp. The new theory is applied to several examples, including a Gaussian autoregressive process (whose true convergence rate is known), and a Metropolis adjusted Langevin algorithm. The results strongly suggest that convergence rate bounds based on single-step d&m conditions are quite inadequate in high-dimensional settings.

Summary

We haven't generated a summary for this paper yet.