The Coupling/Minorization/Drift Approach to Markov Chain Convergence Rates
Abstract: This review paper provides an introduction of Markov chains and their convergence rates which is an important and interesting mathematical topic which also has important applications for very widely used Markov chain Monte Carlo (MCMC) algorithm. We first discuss eigenvalue analysis for Markov chains on finite state spaces. Then, using the coupling construction, we prove two quantitative bounds based on minorization condition and drift conditions, and provide descriptive and intuitive examples to showcase how these theorems can be implemented in practice. This paper is meant to provide a general overview of the subject and spark interest in new Markov chain research areas.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.